Habitat Segregation Patterns of Container Breeding Mosquitos: The Role of Urban Heat Islands, Vegetation Cover, and Income Disparity in Cemeteries of New Orleans

Int J Environ Res Public Health. 2021 Dec 26;19(1):245. doi: 10.3390/ijerph19010245.

Abstract

Aedes aegypti and Aedes albopictus are important pathogen-carrying vectors that broadly exhibit similar habitat suitability, but that differ at fine spatial scales in terms of competitive advantage and tolerance to urban driven environmental parameters. This study evaluated how spatial and temporal patterns drive the assemblages of these competing species in cemeteries of New Orleans, LA, applying indicators of climatic variability, vegetation, and heat that may drive habitat selection at multiple scales. We found that Ae. aegypti was well predicted by urban heat islands (UHI) at the cemetery scale and by canopy cover directly above the cemetery vase. As predicted, UHI positively correlate to Ae. aegypti, but contrary to predictions, Ae. aegypti, was more often found under the canopy of trees in high heat cemeteries. Ae. albopictus was most often found in low heat cemeteries, but this relationship was not statistically significant, and their overall abundances in the city were lower than Ae. aegypti. Culex quinquefasciatus, another important disease vector, was also an abundant mosquito species during the sampling year, but we found that it was temporally segregated from Aedes species, showing a negative association to the climatic variables of maximum and minimum temperature, and these factors positively correlated to its more direct competitor Ae. albopictus. These findings help us understand the mechanism by which these three important vectors segregate both spatially and temporally across the city. Our study found that UHI at the cemetery scale was highly predictive of Ae. aegypti and strongly correlated to income level, with low-income cemeteries having higher UHI levels. Therefore, the effect of excessive heat, and the proliferation of the highly competent mosquito vector, Ae. aegypti, may represent an unequal disease burden for low-income neighborhoods of New Orleans that should be explored further. Our study highlights the importance of considering socioeconomic aspects as indirectly shaping spatial segregation dynamics of urban mosquito species.

Keywords: Aedes aegypti; Aedes albopictus; New Orleans; cemeteries; income disparity vegetation cover; urban heat island (UHI).

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aedes*
  • Animals
  • Cemeteries*
  • Cities
  • Ecosystem
  • Hot Temperature
  • Mosquito Vectors
  • New Orleans
  • Plant Breeding